Understanding the ordinary to forecast the extraordinary: four years of integrated insights into Stromboli's explosive activity and hazard mitigation
Piergiorgio Scarlato1 , Daniele Andronico2, Marina Bisson3 , Elisabetta Del Bello1, Tullio Ricci1, Jacopo Taddeucci1, and the UNO participants: Bagnato E., Biensan C., Cantarero M., Cerminara M., Cigala V., Cimarelli C., Ciancitto F., Civico R., Cristaldi A., De Astis G., De Beni E., de\' Michieli Vitturi M., Di Fiore F., D'Oriano C., Gianardi R., Iacono F., Iarocci A., Kueppers U., Landi P., La Spina A., Mari M., Martinelli F., Mollo S., Moschini P., Nazzari M., Orazi M., Palaseanu-Lovejoy M., Pennacchia F., Peluso R., Pontesilli A., Salerno G., Schiavon B., Schmid M., Spina L., Spinetti C., Tamburello G., Tarabusi G., Tarquini S., Vallocchia M., Vossen C., Di Stefano G., Zanella G.
Affiliations: 1Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Roma, Italy; 2Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy; 3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Presentation type: Poster
Presentation time: Tuesday 16:30 - 18:30, Room Poster Hall
Poster Board Number: 98
Programme No: 3.16.25
Abstract
The INGV UNO project (Understanding the Ordinary to Forecast the Extraordinary) adopts a comprehensive, multidisciplinary approach to investigating the Stromboli volcano's explosive activity. In its fourth year, the project made significant advances in four key areas: physical and chemical parameterization of eruptions, textural and petrochemical analysis of eruptive products, morphological monitoring and remote sensing, and data management. Over 15 multi-sensor data acquisition campaigns revealed critical insights into the complex interplay between explosive activity, underlying magmatic processes and morphological changes. Enhanced SKATE systems enabled the collection of high-frequency thermal, acoustic, and UV datasets, yielding refined eruption parameters and correlations among SO₂ emissions, acoustic signals, and eruption dynamics. An automatic sampler allowed high-frequency petrochemical analyses linking magma crystallization and degassing dynamics to variations in eruptive intensity, with new findings highlighting the interaction of high-pressure and low-pressure magmatic components. UAS and LiDAR surveys documented detailed morphological changes at the crater terrace, Sciara del Fuoco and other sector of the island affected by hydrogeological instability with unprecedented temporal detail, producing high-resolution digital terrain models. Integrated numerical simulations advanced hazard mapping for ballistic projectiles. A geospatial database was built for streamlined data storage, analysis, and dissemination. Outreach efforts included citizen science initiatives, fostering community resilience on Stromboli. International collaborations enriched research outputs, which included multiple publications and contributions to major conferences. The results evidenced clear precursory patterns preceding the two large explosions of 2019 and 2024, providing a framework for studying open-vent volcanoes globally, enhancing preparedness against volcanic risks.